
https://www.vesvault.com

Page 1 Jim Zubov <jz@vesvault.com>, 2017

VESrecovery Scramble Algorithm: RDX1.2

RDX1.2 is distributed scrambling algorithm, intended for using with Viral Encrypted

Security (VES), and based on the considerations mentioned in VES Whitepaper.

RDX1.2 converts a Recovery Secret into a set of Recovery Tokens with a specified

level of redundancy. The algorithm is cryptographically similar to Shamir's Secret

Sharing, although it uses a different mathematical approach.

Algorithm version tag: "RDX1.2".

Scrambling the Recovery Secret:

Algorithm Inputs:

 R: (binary) The Recovery Secret.

 n: (int) Required number of tokens to achieve VESrecovery.

 N: (int) Total number of friends.

Assertions:

 n ≥ 1 (n = 1 is a degenerate case, unsecure, highly discouraged).

 N ≥ n.

Process:

 Generate a vector of bases bi, 1 ≤ i ≤ N.

 Produce the matrix of coefficients Ci,j = bi
j - 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

 Generate an intermediate vector Uj:

U1 = R

Uj = random(length(R)), 1 < j ≤ n.

 Generate the vector of variables Vj, 1 ≤ j ≤ n:

Vj = AES256_CBC_encrypt(plaintext: Uj, key: Uj + 1) || 0x01,

1 ≤ j < n

Vn = Un || 0x01

("||" denotes concatenation).

The resulting values Vj are to be treated as little-endian signed integers of

unlimited length (the last byte is the MSB, the highest bit of the last byte is the

sign). The 0x01 byte is appended to mitigate denormalization in case MSB

equals 0x00 or 0xff).

https://www.vesvault.com/assets/download/VES%20Whitepaper.pdf
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing

https://www.vesvault.com

Page 2 Jim Zubov <jz@vesvault.com>, 2017

 Multiply the matrix of coefficients Ci,j by the vector of variables Vj to produce the

vector of tokens Ti.

Algorithm Outputs:

 Ti (array(binary)) Recovery tokens, 1 ≤ i ≤ N.

 Metadata for each Token, to be passed to each Vault Item:

o v (string) Algorithm version tag, "RDX1.2".

o n (int)

o b (int) Base value for the Token, bi.

Reconstructing the Recovery Secret:

(The input data are collected from tokens with matching algorithm version v, assert

same value of n for each token).

Algorithm Inputs:

 n: (int) Required number of tokens to achieve VESrecovery

 Ti: array((binary)) The Recovery Tokens, 1 ≤ i ≤ m.

 bi (array(int)) Base values, corresponding to each Ti.

Assertions:

 n ≥ 1.

 bi are all distinct values.

 m ≥ n.

Process:

 Create a vector ak as a subset of bi, 1 ≤ k ≤ n.

 Produce a square matrix Ck,j = ak
j - 1, 1 ≤ k ≤ n, 1 ≤ j ≤ n.

 Divide the vector of tokens Ti by the matrix Ck,j, using Gauss-Jordan reduction,

or some other linear algebra approach. If the division is not possible – fail.

Resulting vector of variables Vj.

 Assert the normalized little-endian binary value of Vj ends with 0x01 byte.

Otherwise – fail.

 Reconstruct the intermediate vector Uj, 1 ≤ j ≤ n.

https://www.vesvault.com

Page 3 Jim Zubov <jz@vesvault.com>, 2017

Un = (Vj // 0x01)

Ui = AES256_CBC_decrypt(ciphertext: (Vj // 0x01), key: Uj + 1),

1 ≤ j < n

 ("//" denotes truncation of a trailing byte sequence)

 If any of the above steps fails – return to the first step and try a different subset

ak of bi, until the possibilities are exhausted.

Algorithm Output:

 R = U1 (binary) The Recovery Secret.

Additional considerations:

 If the resulting value R is found to be not a valid Recovery Secret – try a different

subset ak of bi, until the possibilities are exhausted.

 If the valid R is found and m > n – foul check can be performed. Scramble the

reconstructed vector of variables Vj for the supplied vector of bases bi, using the

corresponding steps of the Scrambling process, and compare resulting tokens to

the supplied values Ti. If any mismatches are found, the corresponding friends

can be flagged as foul.

